Iterative Snapping of Odometry Trajectories for Path Identification

نویسندگان

  • Richard Wang
  • Manuela M. Veloso
  • Srinivasan Seshan
چکیده

An increasing number of mobile devices are capable of automatically sensing and recording rich information about the surrounding environment. Spatial locations of such data can help to better learn about the environment. In this work, we address the problem of identifying the locations visited by a mobile device as it moves within an indoor environment. We focus on devices equipped with odometry sensors that capture changes in motion. Odometry suffers from cumulative errors of dead reckoning but it captures the relative shape of the traversed path well. Our approach will correct such errors by matching the shape of the trajectory from odometry to traversable paths of a known map. Our algorithm is inspired by prior vehicular GPS map matching techniques that snap global GPS measurements to known roads. We similarly wish to snap the trajectory from odometry to known hallways. Several modifications are required to ensure these techniques are robust when given relative measurements from odometry. If we assume an office-like environment with only straight hallways, then a significant rotation indicates a transition to another hallway. As a result, we partition the trajectory into line segments based on significant turns. Each trajectory segment is snapped to a corresponding hallway that best maintains the shape of the original trajectory. These snapping decisions are made based on the similarity of the two curves as well as the rotation to transition between hallways. We will show robustness under different types of noise in complex environments and the ability to propose coarse sensor noise errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Vision-Based and GPS-Signal-Independent Approach in Jamming Detection and UAV Absolute Positioning Assessment

The Unmanned Aerial Vehicles (UAV) positioning in the outdoor environment is usually done by the Global Positioning System (GPS). Due to the low power of the GPS signal at the earth surface, its performance disrupted in the contaminated environments with the jamming attacks. The UAV positioning and its accuracy using GPS will be degraded in the jamming attacks. A positioning error about tens of...

متن کامل

Investigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)

This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...

متن کامل

General Solution for Linearized Stochastic Error Propagation in Vehicle Odometry

Abstract: Although odometry is nonlinear, it yields sufficiently to linearized analysis to produce a closed-form transition matrix and a symbolic general solution for both deterministic and stochastic error propagation. The implication is that vehicle odometry can be understood at a level of theoretical rigor that parallels the well-known Schuler oscillation of inertial navigation error propaga...

متن کامل

GPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor

Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...

متن کامل

Visual-Inertial Odometry-enhanced Geometrically Stable ICP for Mapping Applications using Aerial Robots

This paper presents a visual–inertial odometry– enhanced geometrically stable Iterative Closest Point (ICP) algorithm for accurate mapping using aerial robots. The proposed method employs a visual–inertial odometry framework in order to provide robust priors to the ICP step and calculate the overlap among point clouds derived from an onboard time–of– flight depth sensor. Within the overlapping ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013